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Abstract

Phase equilibria for mixtures of a polymer and a supercritical solvent are

investigated by means of Expanded Gibbs Ensemble simulations. Our results

indicate that such systems exhibit both lower and upper critical solution tem-

perature (LCST and UCST) phenomena. Closed-loop miscibility diagrams are

observed for systems with no specific preferences for like and unlike components.

The results of our simulations for Lennard-Jones polymer-solvent mixtures are

in qualitative agreement with experimental data for polymers in supercritical

solvents.
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Introduction

Solutions of polymers and supercritical fluids (SCF) are encountered in a variety of

chemical processes [1, 2]. A substance is said to be supercritical if it is at conditions

above its critical temperature Tc and critical pressure Pc. A unique feature of SCFs

near the critical point is that their properties (e.g. density) are highly susceptible to

small changes of pressure; this increased susceptibility can be used advantageously to

achieve desirable processing conditions. For polymers, the quality of a solvent is related

to its density. Solvent quality can therefore be fine-tuned by small changes in pressure,

thereby providing a means to control solubility. By controlling the solubility of different

molecular-weight polymer, it is possible to conceive and design polymer fractionation

processes. While several experimental studies have examined the phase behavior of

SCF/polymer mixtures (see, for example, [1] and references therein), theoretical work

has lagged behind. The complex interplay of density and solvent quality encountered

in SCF/polymer mixtures has precluded development of successful theories for these

systems. Furthermore, computer simulation studies of phase equilibria for polymers in

supercritical solvents have been, to the best of our knowledge, nonexistent.

For polymer systems that exhibit an LCST, polymer solubility decreases with

increasing temperature. When both polymer and solvent are highly polar, the LCST

is usually below the boiling temperature of the solvent. In contrast, if both components

are non-polar, the LCST is usually found at temperatures close to or above the critical

temperature of the pure solvent. The so-called LCST behavior has been attributed to

a large difference between the thermal expansion coefficient of the polymer and that

of the solvent; the latter expands much faster than the former as their mixtures are

heated. Adding polymer to the solvent lowers the solvent’s density, thereby decreasing

the translational entropy of solvent molecules. Eventually, as solvent molecules loose

the ability to group around a chain molecule to dissolve it, the polymer precipitates.

A traditional approach to polymer thermodynamics has been provided by the
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lattice model of Flory and Huggins [3]. This model gives a simple expression for the

free energy of mixing ∆Gmix in terms of volume fractions, chain lengths and the Flory

interaction parameter χ. The χ parameter was originally intended to reflect a differ-

ence in energetic interactions between polymer segments and the solvent. However, in

its original formulation, the Flory-Huggins model only predicts UCST behavior and

it significantly underestimates the critical solution (or demixing) temperature. The

neglect of compressibility effects is responsible for the model’s inability to predict the

experimentally observed LCST behavior. Furthermore, Flory-Huggins theory predicts

that a polymer should be fully soluble in its own monomer (χ = 0) under all con-

ditions. Our results provide exact theoretical evidence that this is not the case and

that both LCST and UCST can occur in such nominally athermal systems with simple

interactions.

Kiran et. al. [1] have studied the effect of molecular weight on the demixing

pressure of polystyrene and polyethylene dissolved in supercritical n-alkanes. For low-

molecular-weight polystyrene (molecular weight 1,240) in near-critical n-butane, they

find LCST-type behavior. However, for molecular weights above 9,000, this systems

exhibit UCST-type behavior. The molecular weight was found to significantly influ-

ence the minimum pressures required to achieve complete miscibility. In contrast,

these authors report that polyethylene (molecular weights 2,100, 16,400, 108,000 and

420,000) in near critical n-pentane exhibits LCST-type behavior. They also show

that the maximum in the pressure-concentration coexistence curves shifts to lower

polymer concentrations with increasing molecular weight. Chen et. al [4] studied

the effect of molecular weight on the propylene/poly(ethylene-propylene) demixing

pressure in the LCST region. Demixing pressure is highly sensitive to the polymer

molecular weight below 30,000. For higher molecular weights, demixing pressure de-

pends on the polymer molecular weight only weakly (if at all). Experimental pressure-

temperature boundaries for 1-butene/poly(ethylene-propylene) mixtures [5, 4] and

n-pentane/polyethylene [1] indicate that the molecular weight dependence of both
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demixing pressure and temperature is more pronounced for low-molecular-weight poly-

mers. These data suggest that an infinite-chain length limit exists for both critical

temperatures and pressures.

In this work, we simulate phase equilibria for polymer/SCF systems over a wide

range of pressures, temperatures and chain lengths. To the best of our knowledge, aside

from a recent letter [6], these results provide the first direct theoretical evidence of the

existence of both UCST and LCST for Lennard-Jones polymers dissolved in their own

monomer. Even in systems for which there are no specific interactions between like

and unlike components, we observe closed miscibility loops. The observed behavior

is explained in terms of compressibility and solvent quality. Our simulations have

been conducted in the framework of the recently proposed Expanded Gibbs Ensemble

[7] using a multiple-time-step hybrid Monte Carlo method [8]. This approach permits

direct constant-pressure simulations of phase equilibria for solutions of moderately long

chains (e.g. 100 segments).

Simulations

The Gibbs Ensemble Monte Carlo (GEMC) [9] method is widely used for simulations

of phase equilibria. Unfortunately, it runs into severe difficulties as the density and size

of the molecules increase. This problem can be alleviated to some extent by using a

combined Continuous Configurational Bias (CCB)-GEMC [10] method. The Expanded

Gibbs Ensemble (EGE) [7] methods employed in this work extends even further the

range of chain lengths amenable to simulations of phase equilibria (both VLE and

LLE).

One of the major limitations of conventional GEMC resides in the required ex-

change of molecules between two boxes; for chain molecules, the probability of suc-

cessful exchanges becomes very small. The conventional algorithm is based on random
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insertions of a molecule; CCB methods replace highly unfavorable random trial inser-

tions of large molecules with more favorable biased insertion attempts. The bias is

subsequently removed by appropriately modifying the acceptance criteria for molecule

transfer attempts.

In the framework of the EGE method, only a few segments of a chain are trans-

ferred at a time (as opposed to the whole chain). This results in a significant increase of

the acceptance of trial insertions, thereby permitting simulations of longer molecules.

The EGE method can be coupled with CCB segmental insertions and deletions of a

‘tagged’ chain. Since this tagged chain need not be transferred as a whole from one box

to the other, parts of it can be present in both boxes at any given time. However, to

satisfy conservation of mass, a chain-length increase in one of the boxes is accompanied

by an equivalent chain-length decrease in the other box. If a tagged chain reaches its

full length or disappears completely, a new tagged chain must be chosen. Thermal

equilibration of the system is achieved by means of a multiple-time-step hybrid Monte

Carlo method. In this method global updates of the positions of all molecules are

attempted at every MC step [8].

Results and Discussion

The polymers studied in this work consist of fully flexible Lennard-Jones chains. Ad-

jacent sites on the chains are connected by stiff springs. The spring potential-energy

function is given by Uspr(r) = H(Q0 − r)2, where H is a force constant, and Q0 is

the minimum-energy distance. Throughout this work we have used H = 1000 and

Q0 = σ. These values lead to an average bond length of approximately σ (where σ is

the Lennard-Jones size parameter); the resulting chains can be considered to consist

of tangent LJ sites. The LJ parameters have been chosen to be σ11 = σ22 = σ12 = 1.0,

and ε11 = ε22 = ε12 = 1.0. The cutoff distance has been set to rc = 2.5σ, and the po-

tential has been shifted to ensure continuity at the cutoff. The number of chains used
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in our simulations varied from 10 for 64-mers to 20 for 16-mers. The number of sol-

vent molecules was chosen such that the overall composition was inside the coexistence

curve. Up to 2000 solvent molecules were necessary for simulations of 64-mers to bring

the overall composition into the unstable region. A simulation cycle consisted (per

box) of one hybrid MC move (10-20 multiple time step Molecular Dynamics moves in

each), three volume moves, and at least 100 transfer moves. A total of at least 1.5×104

cycles were used for all runs.

We have characterized the critical properties of the fluid with cut and shifted

Lennard-Jones potential [12]. Our estimates for the critical parameters of the solvent

(LJ potential, rc = 2.5σ, shifted by 0.0163168ε so that the potential is exactly zero at

cutoff) are in agreement with those reported by Smit [11]

T ∗c = 1.085± 0.005, ρ∗c = 0.317± 0.006

We place the critical point at

T ∗c = 1.08, P ∗c = 0.10, ρ∗c = 0.31

We use these critical parameters as a frame of reference and report our results in

reduced units relative to these values.

We now consider LJ chains dissolved in a supercritical LJ solvent. If the sys-

tem were incompressible and randomly mixed, the bare Flory interaction parameter

χ ∝ 2ε12− ε11− ε22 would be exactly zero and, according to Flory-Huggins theory, the

polymer would be soluble under any conditions. Limited miscibility is a direct con-

sequence of non-random packing and compressibility effects. For polymeric systems

that exhibit an LCST, lower temperatures are required to achieve full miscibility as

the chain length is increased (at constant pressure). In Figure (1) coexistence curves

are shown for 16, 32, 48 and 64-mers at P ∗/Pc = 2.0. All polymers investigated here

become fully soluble at temperatures below T ∗/Tc ∼ 1.13
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Figure (2) presents representative experimental LCST data for poly(ethylene-

propylene) in 1-butene [4]. For all pressures reported in the literature, the LCST is

highly sensitive to molecular weight below 20,000. For higher molecular weights, the

LCST depends only weakly (if at all) on molecular weight. Figure (3) shows simulated

LCSTs as a function of chain length; Consistent with experiment, we find that the for

low-to-intermediate chain lengths the LCST is highly sensitive to molecular weight.

To make a connection between experiment and simulation, we use the notion of an

‘equivalent segment’ [13]. Equivalent segments consist of a number (∼ 10 for most

synthetic polymers) of real repeat units and can be viewed as statistically independent.

Stiffer polymer chains have larger numbers of repeat units per equivalent segment. The

characteristic ratio C∞ provides a measure of equivalent segment size. For polyethylene

and polypropylene C∞ ∼ 7 [13]. Equating a Lennard-Jones bead to an equivalent

segment gives a molecular weight of approximately 150 per bead. When we use this

number to map our model predictions onto the experimental results (Figure (2)) we

find that the lowest experimental polymer molecular weight (790) corresponds to a 5-

bead chain. Our longest chain length (64 beads) would be representative of a polymer

molecular weight of 9,600. The first two data points in Figure (2) are, therefore, within

the range of chain lengths investigated in our simulation.

An important quantity for design of engineering processes is the relative change

in the LCST as the polymer molecular weight increases. From Figure (2) we conclude

that at P/Pc = 1.25, the experimental LCST temperature drops ∼ 11.5 percent as

the polymer molecular weight changes from 790 to 10,000. After extrapolating the

simulation results in Figure (3) to a chain length of 5, we estimate a drop of ∼ 10

percent in the LCST as the chain length increases from 5 to 64, which is in good

agreement with experiment.

The simulated dependence of the LCST on polymer molecular weight shows signs

of leveling off for the upper chain lengths considered in this work. However, the longest

chains investigated here are insufficient to draw any additional conclusions regarding
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the asymptotic behavior of these systems. Experimentally, the LCST temperature

seems to reach a plateau value for relatively high molecular weights (on the order of ∼

100, 000 for poly(ethylene-propylene) in 1-butene). Our results are in qualitative agree-

ment with experimental pressure-temperature boundaries for 1-butene/poly(ethylene-

propylene) [5, 4] and n-pentane/ polyethylene [1], both of which indicate a monotonic

decrease of the LCST temperature with polymer molecular weight.

Figure (4) shows temperature-composition diagrams for LJ chains (N = 16) in

a solvent at two pressures ( P ∗/Pc = 2.0 and P ∗/Pc = 2.4 ). A closed immiscibility

loop is observed for both pressures. The miscibility gap is substantially broader for

the lower pressure, which indicates that, as expected, solvent quality improves with

increasing pressure. Figure (5) shows temperature-density coexisting curves for the

same system. The densities of the coexisting phases differ substantially; the density

of polymer-rich phase is much higher than that of the polymer-lean phase. We can

resort to qualitative arguments to construct a physical picture of this nontrivial closed

immiscibility loop behavior. Under all conditions, the solvent always has a lower density

than the polymer melt. Mixing the two results in a solution with a density intermediate

between that of the solvent and that of the polymer. The degree of miscibility will be

determined by two opposing forces. A higher solution density is energetically favorable;

a large translational entropy, however, is favored by low densities. At temperatures

below the LCST, the enthalpic and entropy-of-mixing contributions to ∆Gmix are more

important than the loss of translational entropy by the solvent; the system therefore

prefers to form a one-phase solution. As the temperature increases, the solvent expands

very rapidly; the entropy of the solvent rises significantly as the density decreases.

Dissolving the polymer would lead to a higher solution density and a corresponding

loss of translational entropy. Above the LCST, the penalty for loss of translational

entropy by the solvent becomes too large, and the system splits into distinct low-

density polymer-lean and high-density polymer-rich phases (Figure 5). As the system

temperature increases further, a situation is reached for which enthalpic contributions
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dictate the thermodynamic behavior of the mixture. Higher densities are favored by

energetic interactions. At some temperature the density of the solvent becomes so

low, that the high values of translational entropy are no longer sufficient to maintain a

high potential energy of the low-density polymer-lean phase. At this point the system

prefers to form a one-phase solution with a density intermediate between that of the

pure polymer and the pure solvent.

Conclusions

For the first time, we report from computer simulations the existence of both LCST

and UCST in polymer / supercritical monomer systems. The simulations were carried

out in the Expanded Gibbs Ensemble in conjunction with the multiple time step Hy-

brid Monte Carlo technique. This approach allows for direct constant-pressure phase

equilibria calculations in polymeric systems consisting of relatively long chains. The

simulated phase diagrams take the shape of a closed immiscibility loop. The solvent

density and compressibility are the key factors that determine phase equilibria, and

we quantify the effects of pressure and temperature on polymer solubility. Lowering

the pressure leads to a decrease of polymer solubility and shifts the LCST to lower

values. By adjusting the pressure, one can control the width (and the existence) of the

miscibility gap and ultimately reach conditions of full miscibility. For the chain lengths

investigated in this work (16 - 64) we observe a monotonic decrease of the LCST with

chain length. This decrease is consistent with experiment. The simulated and exper-

imental LCSTs suggest that an asymptotic critical temperature (pressure dependent)

is reached as the polymer molecule becomes large.

Equation-of-state modeling studies of polymer-near-critical solvent mixtures have

consistently failed to accurately predict the phase behavior of such systems (and, in

particular, LCST behavior) from knowledge of pure-component properties [1]. The

simulation results presented in this work provide a much needed testbed for develop-
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ment of improved equations of state capable of predicting the phase behavior of such

systems.
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LIST OF SYMBOLS

∆Gmix = Gibbs energy of mixing

P ∗ = reduced pressure

T ∗ = reduced temperature

P ∗c = solvent critical pressure

T ∗c = solvent critical temperature

rc = cutoff distance

C∞ = polymer characteristic ratio

Greek letters

χ = Flory’s χ parameter

ε = energy parameter

σ = size parameter

ρ∗c = solvent critical density
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Subscripts

c = critical point
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FIGURE CAPTIONS

• Figure 1: Demixing temperatures for LJ polymer in LJ solvent at P ∗/P ∗c = 2 as

functions of polymer concentration for various chain lengths N . Circles: N = 16,

squares: N = 32, diamonds: N = 48, triangles: N = 64. Temperature units are

relative to solvent Tc. The line is a guide to the eye.

• Figure 2: LCST dependence on the polymer molecular weight for 1-butene /

poly(ethylene-propylene) from experimental data [4]. The line is a guide to the

eye.

• Figure 3: LCST dependence on the polymer chain length from EGE simulations

(see also Figure (1)). The line is a guide to the eye.

• Figure 4: Demixing temperatures for LJ polymer (N = 16) in LJ solvent at

P ∗/P ∗c = 2.0 (circles) and P ∗/P ∗c = 2.4 (squares) as function of polymer concen-

tration. Temperature units are relative to solvent Tc. The line is a guide to the

eye.

• Figure 5: Demixing temperatures for LJ polymer (N = 16) in LJ solvent at

P ∗/P ∗c = 2.0 (circles) and P ∗/P ∗c = 2.4 (squares) as function of solution density.

Temperature units are relative to solvent Tc. The line is a guide to the eye.

12



References

[1] E. Kiran. In E. Kiran and J.M.H. Levelt Sengers, editors, Supercritical Fluids.

Fundamentals for Application. Kluwer Academic Publishers, 1994.

[2] L.A. Kleintjens. In E. Kiran and J.M.H. Levelt Sengers, editors, Supercritical

Fluids. Fundamentals for Application. Kluwer Academic Publishers, 1994.

[3] P.G. Flory. Principles of Polymer Chemistry. Cornell University Press, Ithaca,

1953.

[4] S.J. Chen, I.G. Economou, and M. Radosz. Macromolecules, 25:4987, 1992.

[5] S.J. Chen and M. Radosz. Macromolecules, 25:3089, 1992.
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